AD=AD83 616 ll““"‘ IDIXV-HADI!OI mmm ICS_RESEARCH CENTER
cmucm:unou oF UNTUE MDD m ~=ZTCIV)

UNCLASSIFIED “—

[ o
|

F/7¢ 1871

rrrrrr




= j2e 2
“"llEO :’-7 | KX Hmz.z
—— E 16 =
£z fl2o

lizs flis e

rrr
r
rr

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A




MRC Technical Summary Report #2034

e« BRI ORI G .

OPTIMAL SIMPLEX TABLEAU
CHARACTERIZATION OF UNIQUE
AND BOUNDED SOLUTIONS OF
LINEAR PROGRAMS

0. L. Mangasarian

ADAUS83816

Mathematics Research Center”

University of Wisconsin—Madison
610 Walnut Street
Madison, Wisconsin 53706

January 1980 -

(Received December 7, 1979) Q/ , ! / 'tQ ;
\/Q/@/C =/
. /'. . - ’

Approved for public release
Distribution uniimited

h
) Sponsored by cuat
;€2 U. S. Army Research Office and National Science Foundation v
P. 0. Box 12211 Washington, D. C. 20550 5

Research Triangle Park
North Carolina 27709

80 4 9 105




UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

OPTIMAL SIMPLEX TABLEAU CHARACTERIZATION
OF UNIQUE AND BOUNDED SOLUTIONS OF LINEAR PROGRAMS

W

0. L. Mangasarian

13 .
A Technical Summary Report #2034
b
' January 1980
ABSTRACT
i Uniqueness and boundedness of solutions of linear programs are chara:-
: terized in terms of an optimal simplex tableau. Let M denote the submatrix
.
in an optimal simplex tableau with columns corresponding to degenerate optimal
; dual basic variables. A primal optimal solution is unique if and only if
, there exists a nonvacuous ronnegative linear combination of the rows of
% corresponding to degenerate optimal primal basic variables which is positive.
5
: . The set of primal optimal solutions is bounded if and only if there exists a
nonnegative linear combination of the rows of M which is positive. When
- b L a . . N +
M is empty the primal optimal solution is unique.
: AMS (MOS) Subject Classification: 90C05
5 Key Words: Linear programming, simplex method, uniqueness, boundedness
s
? Work Unit Number 5 - Operations Research
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STANIFICANCE AND EXPLANATION

Linear programming i roblems are fundamental to operations research and
related arcas.  The simplex method and its variants are the basic tools for
sclving these problems. In this report we characterize those linear rrogram-
ing jroblems that have unicue solutions and those that have bounded solutions

in terms of information available once the problem is solved by the simplex

method.
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OPTIMAL SIMPLEX TABLEAU CHARACTERIZATION
OF UNIQUE AND BOUNDED SOLUTIONS OF LINEAR PROGRAMS

O. L. Mangasarian

1. Introduction

In [4) the author gave a number of equivalent characterizations of the unicueness cf a

solution of a general linear programming problem. These characterizations did not inclui- a:
explicit characterization which could be applied directly to the final optimal simplex tabiea:

for the standard linear programmming problem in order to determine whether the particular =i t:-

=
‘ mal solution represented by the tableau is unique or not. Such a characterization, giver in
Theorem 1 below, follows after some nontrivial algebra from Theorem 2(v) [4]. However a =im: .
.oE direct proof of this characterization is also possible and is given here for the sake of com-
pleteness. Theorem 2 characterizes the uniqueness of a dual optimal solution in terms of an
. optimal simplex tableau also.
gx
B . In (6] Williams gave characterizations of a bounded solution set of a linear yrooram ir
i
i terms of the initial data of the linear program. In Theorems 4 and 5 we characterize the
- boundedness of the primal and dual optimal solution sets respectively in terms of an optimal

simplex tableau. As expected the boundedness characterizations impose less stringent condition.s
than the corresponding uniqueness characterizations. The possible and impossible combination:
of uniqueness, boundedness and degeneracy of primal and dual optimal solutions are summarized

| in Table 1. Examples following Table 1 illustrate all the possible combinations.

We introduce now the standard linear program in canonical form [1]

SRRE - 11 S

Maximize z = cTy subject to Ay < b, vy >0 (1)
n
YeR

g e

: : n m: . . ;
where ¢ and b are given vectors in R and R respectively, A 1is a given real m > n

matrix and the superscript T denotes the transpose. We note immediately that uniqueness of

- - - +
a solution y to (1) is equivalent to uniqueness of a solution (y,s) in R™™ to the

SR PR e
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CL- . . m
eguivalent problem with slack variable s in R

x Maximize z = cTy subject to s = -Ay + b, ¥y >0, s >0 .
g n+
(v,s)- R " 1
- Fy .
Define x = (y.s) and assume that after a finite number of pivots the following standard opti-~

mal simplex tableau [1,5] has been obtained after a column and row rearrangement if necessary.

X X
N, Ny =1
e e e
M ]
L ! M +
+ [ + x}3
. +
e e e e e m = = - - - (3)
]
M L I M 0 |x
0 ' 0 Bo
!
[}
+ \ 0 0lz
u u u u
N+ N0 B+ BO
|
This is equivalent to the following condensed or Tucker tableau [2,7]
-x -x
N, No 1
]
'
= [ M + -
uy X L+ \ .,
+ +
[} (3') [
_____ - -~
u X L M 0
0 ! o]
. Yo Bo .
[
1 z = + ! 0 o)
1
; B, By
For convenience define
M
+
L= [Lo M) and m= |
i
In the above tableaus the symbols are defined as follows: .
L4
*g = primal optimal positive basic variables (with values denoted by + in rightmost ’ ‘

column of tableau (3))

_2-
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primal optimal zero basic variables (with values denoted by 2 in rightmost column

of tableau (3))

dual optimal pesitive basic variables (with values denoted by + in bottom row of

tableau (3))

dual optimal zero basic variables (with values denoted by 0 in bottom row of
tableau (3))

primal optimal (zero) nonbasic variables corresponding to ug
+

primal optimal (zero) nonbasic variables corresponding to u

BO
dual optimal (zero) nonbasic variables corresponding to Xg
+
dual optimal (zero) nonbasic variables corresponding to x
0
identity matrix of appropriate dimension
matrix in tableau (3) with rows corresponding to Xy and columns corresponding to
+
u
BO
matrix in tableau (3) with rows corresponding to Xg and columns corresponding to
u 0
B
o]
matrix in tableau (3) with rows corresponding to Xy and columns corresponding to
+
s
+
matrix in tableau (3) with rows corresponding to X and columns corresponding to
0
s
+
(x X, )
B+ BO
(x X )
N+ NO
(u u. )
B+ NO
(u u. )
N+ NO

dual objective function

maximum value of the primal objective function on the feasible region.

-3-
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Our principal results, contained in Theorems 1 to 5, are given in terms of the rav:

% MO' M and L of the optimal tableau (3) and can be summarized as follows:

(1) Primal uniqueness x

# § whenever ug # ¢ and pTM > 0 for some 1 -

B 0 0 C T

(2) Dual unigqueness uy # # whenever Xy # ¢ and Moq <0 for some ¢ 0

0 0

(3) Primal and dual unigueness X =g and u =g
B0 B0

(4) Primal boundedness x'™M > 0 for some r >0

(5) Dual boundedness Lt < 0 for some t > 0.
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2. Uniqueness of Solution

With the aid of the optimal tableau (3} it is possible to characterize the uniiuooes: o

a primal optimal solution as follows.

Theorom 1 (Uniqueness of primal optimal solution). The primal ortimal solution = -,
linear program (1}, x > 0, % =0, x =0, x = 3, is unique if and onl- i x,
B B N N -
+ 0 + o} -
nonvacuous whenever uB is nonvacuous and there exists a § > 0 such that ;" >
0
Proof. The condition that there exists a p such that p > 0 and pTMO R TS A

alent by Motzkin's theorem of the alternative [3] to

My 20, 0#gq2>0 has no solution q . ()

We establish now the necessity and sufficiency of condition (4) for the uniqueness of th«

solution (xB,xN).

(Necessity) Let (xB,xN) be a unique solution of (1). If ug is empty then conditiocr

0
(4) is vacuously satisfied because Mo is vacuous. Suppose now that ug is nonvcuous then
0
%y is nonvacuous, else for sufficiently small positive A and for a vector e of ones th:
0
point X =x_ - AM.e, x_ =0, x_ = Ae is primal feasible and distinct from (x_ ,x_ ,x_ )
B+ B+ + N+ NO . N+ s

and the corresponding value of the objective function is 2z = Q contradicting the uniqueness

of (x Xy ,xN ). Hence MO is nonvacuous. Suppose now that there exists a g such that

+ + 0
-Moq 2 0 and 0 # q 2 0, thus violating (4). We will show that this contradicts the unigue-
ness of (xB,xN). For a sufficiently small positive number A, the point

x =x - AM+q > 0

X, = -Moq > 0

X, =Ag20 , Ag¥O ,

1
~5- i
!




1s primal feasible and distinct from (xB ,xB ,xN ,xN ) but the corresponding value of the
+ 0 + o]

objective function is 2z = Q thus contrdicting the uniqueness of (xB ,xB ,xN ,xN Y.

(Sufficiency) If wu, is empty then for any other primal feasible point (iB.iN) dis-
0
~ L i
tinct from (x_,x ) at least one component of x_, say (x i must be positive while
BN N+ \ N+/k

X, > 0 1in which case the corresponding value of the objective function is

. T . o ( AR ) 0<o
zZ = -u, X + <= ju ) X + <
B+ N+ = B+ k\ N+ X
and hence (iB,iN) cannot be primal optimal and so (xB,xN) is unique. Suppose now that
uB is nonvacuous then xB and consequently MO are nonvacuous and suppose that (4) holds.
0 0

We will now show that if (xB,xN) is not unique a contradiction ensues. For a distinct opti-

N

mnal solution (iB,iN) to exist we need to have 0 # (iN JX ) 20. If 0# iN > 0, then

+ 0 +
z = -ug iN + Q < Q and hence the point cannot be optimal. So QN =0 and 0 # iN > 0.
+ o+ /N + 0
Now if for some k-th component of -M.x_ , =M x < 0, it follows that
0”N v 0N
I [N o - 0;k R .
‘X, | = =M x. j < 0 making the point infeasible. Hence -M_x >0 and 0 #x, 20,
N BOik \ 0 NO/k 0 NO N0
which contradicts (4).
W
Remark 1. 1In [1,p.95] Dantzig established the sufficiency of the emptiness of ug for
0

the uniqueness of the primal optimal solution. This is a special case of Theorem 1 above.

Uniqueness of a solution to the dual linear program

Minimize w = bTv subject to AT; >c, v20 (5)

m
veR

associatell with the linear program (1) can also be obtained by means of the optimal tableau (3).
We again note that uniqueness of a solution v to (5) is equivalent to uniqueness of a

-z . m+ . . . : ; n
solution (v,t) in R % to the equivalent linear program with slack variable t in R

Minimize w = bTv subject to t = ATv -c,v20,t20 . (6)
(v,t) ERm+n
The combined dual variables v and t are defined as u = (v,t) and appear in tableau (3).
By casting (5) into the equivalent format of problem (1)

~6-
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T . T, . N
» =W = =b"yv subiect to -AV [ "¢,V ¢ (T
v- R
we (an Tnaracterize unigueness of its solution by means of tableau (3) as follows.
.

Theorenm 2. (Uniqueness of dual optimal solution) The dual optimal solution to the linear

rrogram (1), u_. > 0, u =0, u. =20, u = 0, is unique if and only if u is nonvacucus
B, BO l\+ NO BO

waehever X is nonvacuous and there exists a g > 0 such that Moq < 0.
B -

By combining Theorems 1 and 2 we can characterize the simultaneous uniqueness of both

1rimal and dual optimal solutions as follows.

-
Theorem 3. (Unigqueness of primal and dual optimal solutions) The primal and dual optimal
solations to the linear program (1) are both unique if and only if both are nondegenerate, that
18 %, is empty and u is empty.
B B
o} 0
Proof. If both the primal and dual optimal solutions are nondegenerate then the dual
&

. oi-timal solution is unique by Theorem 2 and the primal optimal solution is unique by Theorem 1.
Suprose now that both primal and dual optimal solutions are unique and that one of them is
- , degenerate. We will exhibit a contradiction. If the primal (dual) optimal solution is
degenerate then by Theorem 2 (Theorem 1) the dual (primal) optimal solution is also degenerate.
Hence both primal and dual optimal solutions are degenerate. By Theorem 1 then there exists a
i+ _ U such that pTMO > 0 and by Theorem 2 there exists a g b4 0 such that Moq < 0. Since

both  and g are nonzerc this then leads to the contradiction

0 < (pM)q = pT(Moq) <o .
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3. Boundedness of Solution

Again with the aid of the optimal tableau (3) it is possible to characterize ti-

ness of a primal optimal solution set as follows.

Theorem 4. (Boundedness of the primal optimal solution set) The primal oitimal =00
set to the linear program (1) is bounded if and only if for some or all optimal sim:l-x
tableaus such as (3) there exists an r > 0 such that rTM > 0.

Proof. Again as in the proof of Theorem 1, the condition that there exists an

that r > 0 and rTM > 0 is equivalent by Motzkin's theorem of the alternative (3] ==

-Ms > 0, 0 # s > 0 has no solution s

We establish now the necessity and sufficiency of condition (8) for the boundedness of ti
solution set of (1).

(Necessity) Let (3) be some optimal tableau for problem (1) and let there exist a novr:
s satisfying s > 0 and -Ms > 0. We will show that this implies that the primal optimal

solution set is unbounded. For any positive A the point

xB = )-AMs > 0
X
Bo/

X =0

N+

X = 1is > 0

No =

is primal feasible, the corresponding value of the objective function is Q and hence is priral
optimal. However ||xN [| = Allsl] is unbounded as A + » because s # 0. Hence the primal

0
optimal solution set is unbounded.

(sufficiency) If for some optimal tableau (3) uy is empty then by Theorem 1, (XB’X“)
o N

is a unique solution of problem (1). So suppose now that u is nonempty for all optimal

By

tableaus of problem (1) and let (3) be any such optimal tableau. We will show that if (1) has
an unbounded primal optimal solution set then there exists a nonzero s such that s > 0 and

-8~




«Ms > 0. Since the primal optimal solution set is unbounded there exists a s«yurnoe o7

nonnegative optimal vectors {x;,x;}, i=1,2,..., such that
X i :
Lim HxB Xgo Xy xN\I =® .
1-»c0
From tableau (3), since XN = (xN ,xN ) = 0, this is eguivalent to
+ 0
/L] /M
lim |- xt Tk, k2 x> | ==
s \FO/ N, \MO Ny N, N

If 0 # x; > 0 then the corresponding value of the objective function is

+
z1 = -u x1 + Q<0
B, N
+ 4
and hence the point (x;,x;) cannot be primal optimal. So x§ =0, i =1,2,..., and
. +
(9) it follows that lim |lxy || = =. But
100 ¢}
i i -
xB = -MxN + xB 20, 1=1,2,... .
o]
Hence
i
MxNo *g
- + - >0, i=1,2,... .
i i =
g 11 Hixy |l
Since lim Hx; || =~ it follows by the Bolzano-Wieirstrass Theorem that the bounded secuenc
i 0
)
NO
- has an accumulation point s such that 0 #s > 0 and -Ms > O.
li=y Il
o]

By the symmetry between (1) and (S5), the following result characterizes the boundedness o7

the dual optimal variables associated with (1)




R

Theorem 5. (Boundedness of the dual optimal solution set) The dual optimal solution set

to the linear program (1} is bounded if and only if for some or all optimal simplex tableaus

such as (3) there exists a t > 0 such that Lt < O.
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D oi.oes1vle Outcomes and Fxamples

now summarize for convenience the possible and impossible combinations of unigueness,

izdness and degeneracy of primal and dual optimal solutions in Table 1. Examiles (1) to

L 8 . - . .
1 ©7) a1llustrating all the possible combinations appearing in Table 1 are ¢iven following the
caile,
Table 1
Primal Optimal Solution
K N = - -
! BD BD up BD BD up
. o (v) (0)
S : T 5 7
£ 1BD 1 19 @ 0 0 0
S
o} - ' '
& lepoyy 100 1@ @Y 0 0
-
- L+ 7I \
E lup l( ) l(l) o 1(4) l(l. o
‘E_ t
© | BD 0 0 1149 0 0 0
—
3 e (")
2 |BD(U)| O 0 1 0 0 0
U 0 o 0 0 0 13
1
B = Bounded D = Degenerate U = Unique
R , ) N
B = Unbounded D = Nondegenerate U = Nonunique
l(l) = Possible combination illustrated by Example (i)
3
l(l - Possible combination illustrated by Example (i)
with the roles of the primal and dual problems
interchanged
o] = Impossible combination.
Example 1 (Primal bounded nonunique degenerate/nondegenerate, dual unique degenerate)
Max X+, s.t. xl+x2 <1 X, <1, X 02 0, X, 2 [
The primal optimal solution set is {xl.xz I x1+x2 =1, x1 > 0, x2 2 0} contains the degenerate
. vertex X, = o, X, = 1 and the nondegenerate vertex X = 1, X, = 0 which correspond to the

following two optimal tableaus respectively where the slacks x3 and x4 have been introduced:

=11~




PRRETRNSTE

=1
: xl x2 x3 Xy = 1 Xy X, X, x2 1
bt [
1 0 1 -1 0 |x 1 0 1 1 1 x
1 :"l
i |
o] 1 0 1 1 x, o] 1 0 11 DXy
1
b -~ . ! ,
o] 0 1 0 1)z 0 o] 1 0 t 11z
uy u, Uy u, Uy u, Uy u,
: From the first tableau we observe that both primal and dual solutions are degenerate, i
primal solution is nonunique, because p * (-1) > 0, p > 0 has no solution. The rrimal 7:.:-
tion set is bounded because (r1 r2) fi) > 0 has a nonnegative solution r, = 0, roo= 1, o
the dual solution is unique because =1 « q < 0, g > 0 has a solution. From the second
tableau we observe that the nondegenerate primal solution is nonunique because it is non-
. = degenerate while the dual solution is degenerate. The primal solution is bounded because

1

(rl r.) (ﬂ > 0 has a nonnegative solution r., =1, r_, = 1. Furthermore the dual solution ::

1 2

[

1

unique because the primal solution is nondegenerate. By interchanging the roles of the :r:ir..
and dual problems this example can also serve to illustrate the case where the dual optimal
solution is bounded, nonunique degenerate/nondegenerate while the primal optimal solution i-

- unique and degenerate.

Example 2 (Primal and dual bounded nonunique degenerate)

Max x1+x2 s.t. x1+x2 < 1, x1+x2 b 1, x

The primal optimal solution set is {xl,xz | x1+x2 =1, x 2 0, x 2 0} contains the two

degenerate vertices x1 =0, x2 =1 and xl =1, x2 = 0 which correspond to the followina
two optimal tableaus respectively with slacks xq and X,
X, X, X x3 =1
1 0 1 1 1 x,
0 1 0 =110 Xy
[¢] o] 0 1 1)z
u, u, uy oy )

-12-




From these tableaus we observe that both primal and dual solutions are degenerate, Tio *v.-

solution is not unique because p + 0 > 0, p > 0 has no solution, but the rrimal solan
is bounded because (r1 r2)<é> > 0 has a nonnengative sclution rl =1, r: = 1. Tis o dual
solution is not unique because 0 » g < 0, g > 0 has no solution, but the dual solit:s

is bounded because (-1 0) z;l < 0 has a solution t, = 1, t, = 1.

Example 3 (Primal and dual unique and nondegenerate)

1, x

1 0, x

Max x +x_ s.t. x. < 1, x Y

172 1

1A

v

[
(=]

The unique primal optimal solution is x., = x, = 1 and the unique dual optimal solution

u, =u, = 1. These solutions correspond to the optimal tableau with slacks %y and X

X) Xy %3 X =1

1
¢}

1 | 0 1 %y
]

0 1 , 0 1 1 x,
i

0 o ' 1 1 2
—t

u3 \.14 ul Uz

We observe from the tableau that both primal and dual optimal solutions are nondegeneratc

hence they are both unique.

Example 4 (Primal unbounded nondegenerate, dual unique degenerate)

Max x2 s.t. x2 < 1, xl,x2 4 c .
The primal optimal solution set {xl,x2 | %52 0, x, = 1} contains the nondegenerate vertex
X, = o, x, = 1 which corresponds to the following optimal tableau where the slack xq has

been introduced :




o A ’%*—ﬂr”

From the tableau we conclude that the primal solution set is unbounded because r * 0 ~ O,

r > 2 has no solution. The degenerate dual solution is unique because the primal solution :=

nondegenerate.

Example 5 (Primal unbounded degenerate, dual unbounded degenerate)

Max x, s.t. X, < 1, X, > 1, Xy #X, >0

The primal optimal solution set is {xl,x2 | X2 0, x, = 1} and the dual solution set is
(ul,uz | ul-u2 =1, ul,u2 > 0}. The primal degenerate vertex solution x. = 0, X, = 1 corre-
sponds to the following optimal tableau with slack variables Xq and Xyt

X, Xy ¥ %=1

T

1 0 : 0 1 1 *,

0 1 : [¢] 1 0 x4

o o o 1|1

u, o, uy ouy

0
From the tableau we conclude that the primal solution set is unbounded because (rl rz)(o>> 0

has no nonnegative solution and that the dual solution is also unbounded because

t
(0 1) tl < 0, has no nonnegative solution.

\2
Example 6 (Primal bounded nonunigue degenerate, dual unbounded degenerate)

Max x2 s.t. x2 < 1, x > 1, xl < 1, xl,x2 > o .

The primal optimal solution set is {xl,x

Q
nAa

x

A

2 g S Lex, = 1} and the dual optimal solution

2

set is (ul,uz,u3 | u -u

174y = 1, uy3 =0, u)eu, > 0}. A primal degenerate vertex solution is

X, =0, x, =1 which corresponds to the following optimal tableau with slack variables x

31

x and x

4 5°
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I3

':zi Xy Xg x %y = 1 I i
: 1 ol o : o 1 1 ;xz
NI 1 2 : 0 1 0 x4
é 2 8] 1 : 1 0 1 Xg
; ST T S I P
ug u, ug oy

Yrom the takbleau we conclude that the brimal optimal solution set is bounded because
;A
.

) .i - & has a nonnegative solution rl =r, =0, r3 = 1. However the primal solu-
= L 2

tion i3 nonunigue because p * O - J has no nonnegative solution. The dual optimal solution
o™

t
set is unbounded because (0 l)itl\< 0 has no nonnegative solution.
\"2/

Example 7 (Primal unique degenerate, dual unbounded degenerate)

v
[}
.

Max X, s.t. x) < 1, “X tx, S -1, X 1Ky 2

The unique primal optimal solution is the degenerate vertex Xy = 1, X, = 0 and corresponds

to the following optimal tableau with slacks x3 and x4

xl X, Xy X, = 1
t

1 0 ! 1 0 1 X,
)

0 1 ! 1 1 0 X,
t

6 o , 1 o |1]z

- T S

From the tableau we conclude that the primal solution is unique because p ¢ 1 > 0 has the

1l
solution p = 1 whereas the dual optimal solution set is unbounded because (1 1) " < 0 has
2

no nonnegative solution.
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